Data The Challenge of Scale

Dan Reed reed@renci.org

Chancellor's Eminent Professor
Vice Chancellor for Information Technology
University of North Carolina at Chapel Hill

Director, Renaissance Computing Institute (RENCI)

You Might Be A Big System Geek If ...

- You think a \$2M cluster
 - is a nice, single user development platform
- You need binoculars
 - to see the other end of your machine room
- You measure system network connectivity
 - in hundreds of kilometers of cable/fiber
- You dream about cooling systems
 - and wonder when fluorinert will make a comeback
- You telephone the local nuclear power plant
 - before you boot your system
- You order storage systems
 - and remember when a gigabyte was lots of data

The Fujitsu Eagle: Remember?

Features

- 380 MB capacity and 18 ms access time
- data rate of nearly 2 MB/s
- 130 pounds and 10" platters
- ~\$10K list

Presentation Outline

- Complex application examples
 - scaling and interdisciplinary coupling
 - sensor data explosion
- Technology enablers
 - exponential change and implications
 - lessons from other sectors
 - biomedicine and business
- Meditations on the future
 - alternative data models and tools
 - the proverbial box
 - what does it look like on the outside?

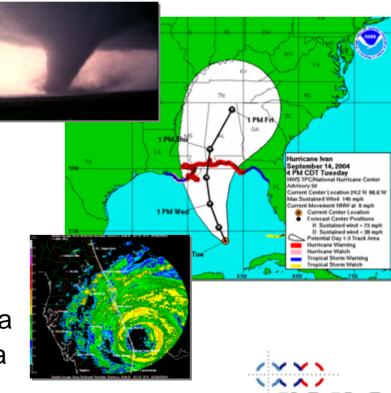
21st Century Scaling Challenges

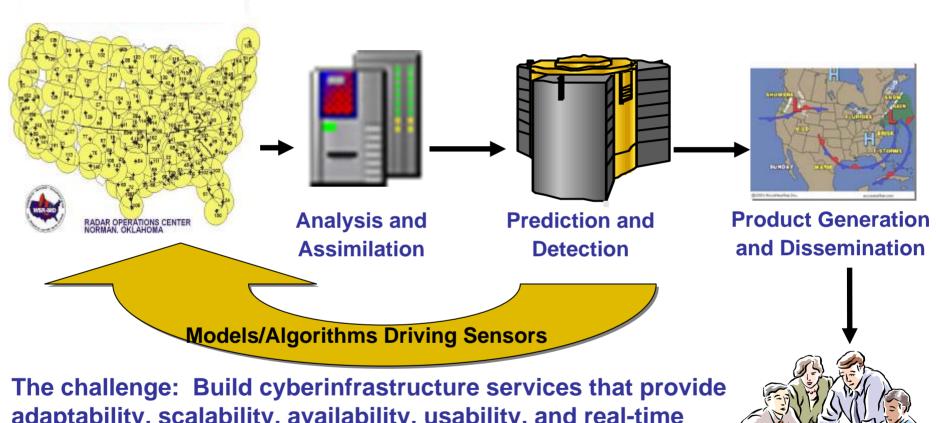
Population growth

- severe weather sensitivity
 - national impact
- geobiology and environment
- economics and finance
- sociology and policy

Econom

- longitulinal
 - **Anteractions**
- genetic sceptibility
 - heart disease, cancer, Alzheimer's
- privacy and insurance
- public policy and coordination


DNAdirect


Weather and Economic Loss

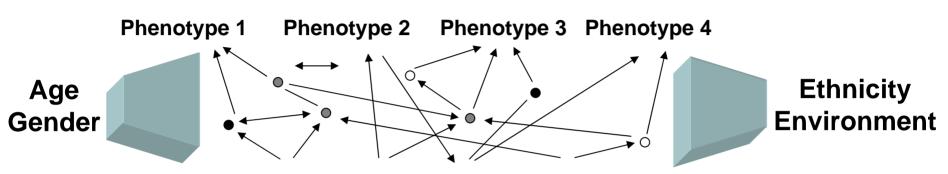
- \$10T U.S. economy
 - 40% is adversely affected by weather and climate
- \$1M in loss to evacuate each mile of coastline
 - we now over warn by 3X!
 - average over warning
 - 200 miles, or \$200M per event
- Improved forecasts
 - lives saved and reduced cost
- LEAD national Grid
 - Oklahoma, Indiana, UCAR
 - Colorado State, Howard, Alabama
 - Millersville, NCSA, North Carolina

Source: Kelvin Droegemeier, Oklahoma

The LEAD Vision: A Paradigm Shift

adaptability, scalability, availability, usability, and real-time

response.




End Users

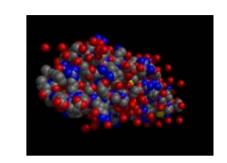
Source: Plale, Indiana

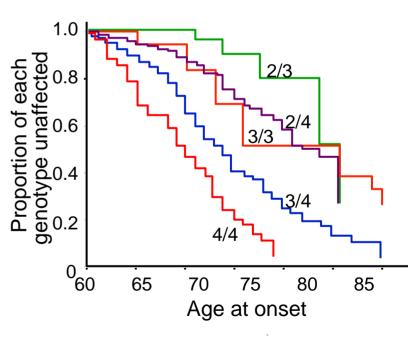
Genetics and Disease Susceptibility

Pharmacokinetics Metabolism Endocrine Physiology Biomarker Signatures Immune Transcriptome Morphometrics

Identify Genes

Predictive Disease Susceptibility




Source: Terry Magnuson, UNC

Mean Onset of Alzheimer's Disease

- apolipoprotein (apo)
 - apoE2, apoE3 and apoE4 alleles
 - on chromosome 19
 - apoE4 allele
 - 40% to 60% of Alzheimer's patients
- Not the only Alzheimer's cause

- apo gene inheritance
 - ~25% inherit 1 copy of apoE4 allele
 - Alzheimer's risk increases 4X
 - 2% inherit 2 copies of apoE4 allele
 - Alzheimer's risk increases 10X

Source: Alan Roses, GSK

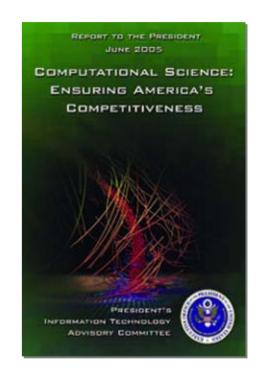
The Data Tsunami

Many sources

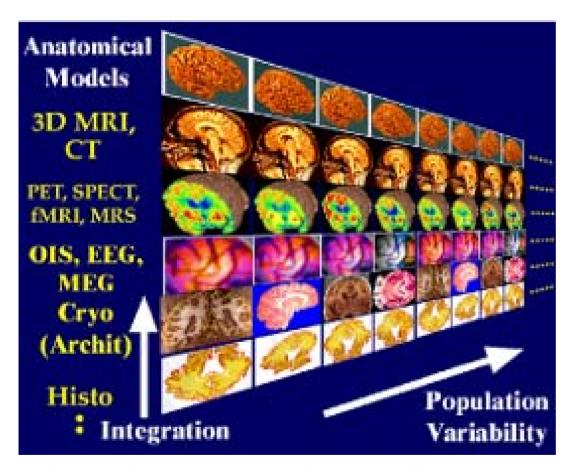
- agricultural
- biomedical
- environmental
- engineering
- manufacturing
- financial
- social and policy
- historical

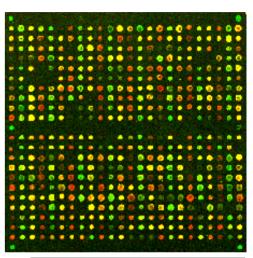
Many causes and enablers

- increased detector resolution
- increased storage capability
- The challenge: extracting insight!



PITAC: Data Management and Sensors


- Explosive growth in the resolution of sensors and scientific instruments is creating unprecedented volumes of experimental data.
- We must increase investment and focus on sensor- and data-intensive computational science in recognition of the explosive growth of experimental data, itself a consequence of increased computing capability.



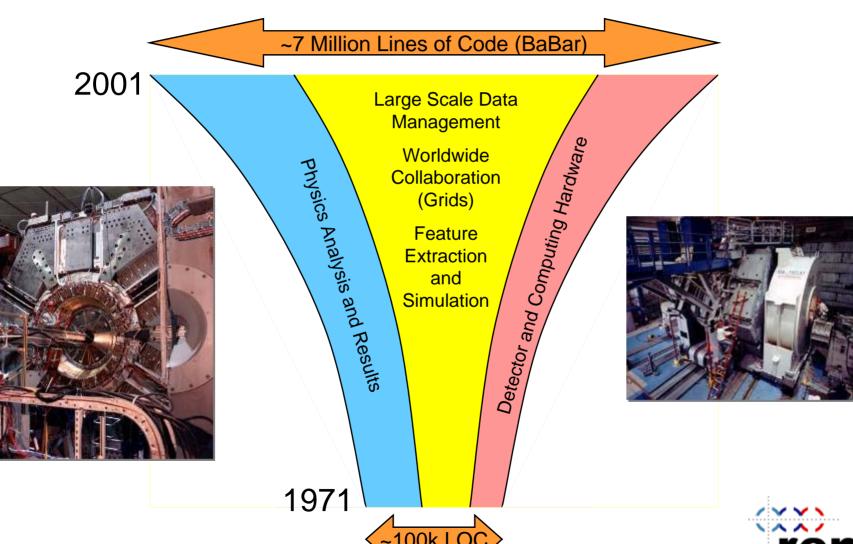
Sensor Data Overload

Source: Chris Johnson, Utah/Art Toga, UCLA

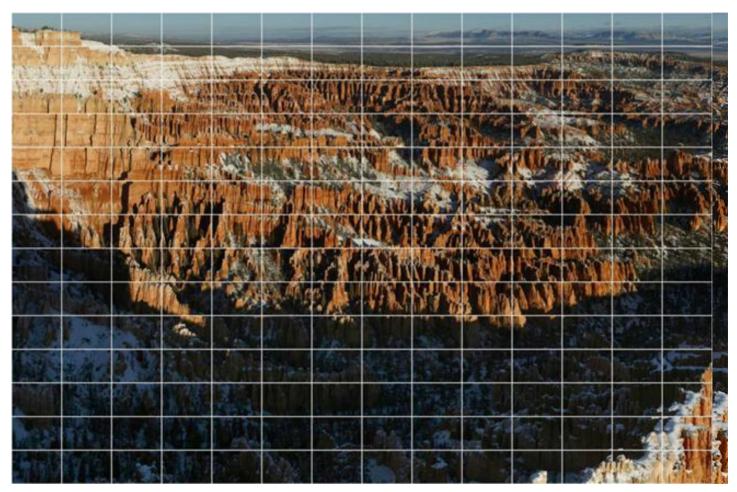
- High resolution brain imaging
 - 4.5 petabytes (PB) per brain

Digital Reality: The Exponentials

- Megabyte
 - a small novel


2006

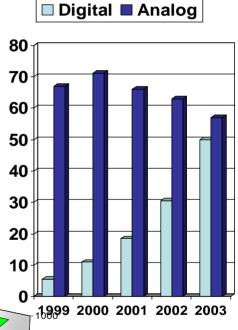
- Gigabyte
 - a pickup truck filled with paper or a DVD
- Terabyte: one thousand gigabytes ~\$1000 today
 - the text in one million books
 - entire U.S. Library of Congress is ~ten terabytes of text
- Petabyte: one thousand terabytes
 - 1-2 petabytes equals all academic research library holdings
 - coming soon to a pocket near you!
 - soon routinely generated annually by many scientific instruments
- Exabyte: one thousand petabytes
 - 5 exabytes of words spoken in the history of humanity

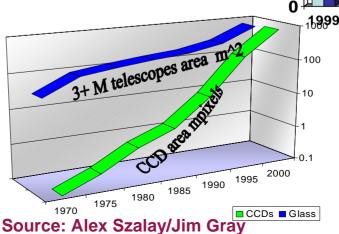

Source: Hal Varian, UC-Berkeley

Data Growth and Complexity

Consumer Gigapixel Images

- 40,784 x 26,800 pixels
 - 196, 6 megapixel images



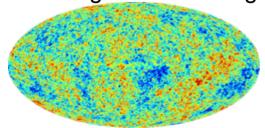

Astronomy and Consumer Cameras

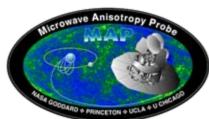
- Digital camera sales
 - now exceed analog
 - January 2006
 - Nikon stopped film camera production
- From glass plates to CCDs
 - detectors follow Moore's law
 - consumer electronics
 - data tsunami
 - data doubles every two years
- Telescope growth
 - 30X glass (concentration)
 - 3000X in pixels (resolution)
- Single astronomy images
 - 16Kx16K pixels and growing

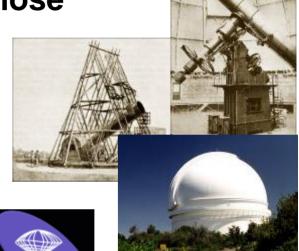
Large Synoptic Survey Telescope (LSST)

- Top project of the astronomy decadal survey
- Celestial cinematography
 - 3 gigapixel detector for wide field imaging
- Science
 - beyond the standard model
 - non-baryonic dark matter
 - non-zero Λ and neutrino oscillations
 - observation targets
 - near Earth object survey
 - · weak lensing of wide fields
 - supernovae measurements

Features

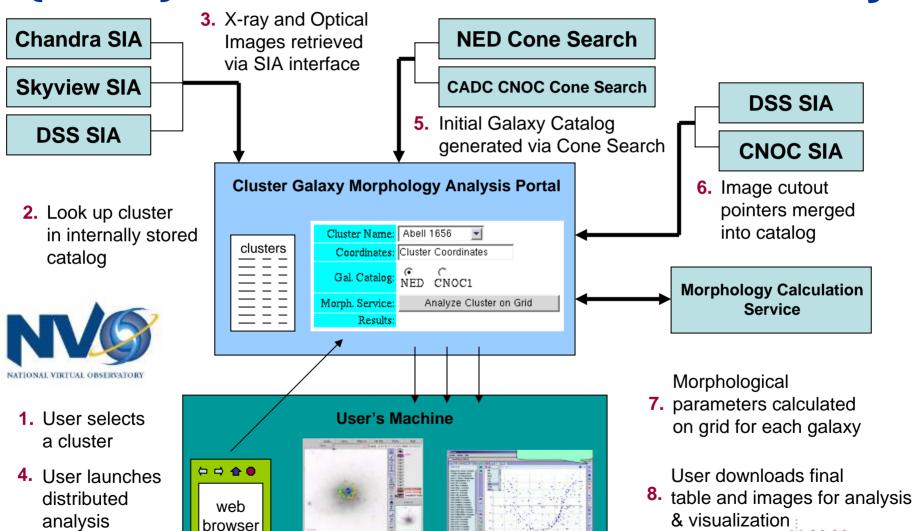

- 9.6 square degree field/6.5 meter effective aperture
- ~15 TB of data/night, target first light 2012



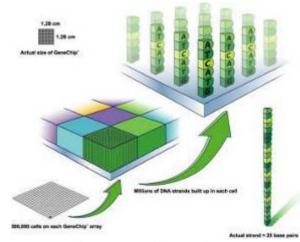


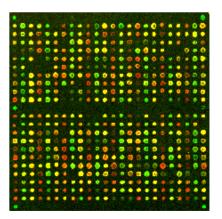
Lessons from Astronomy

- Historically, discoveries accrued to those
 - with access to unique data
 - who built next generation telescopes
- Two things changed
 - growing costs and complexity of telescopes
 - emergence of whole sky surveys
- The result virtual astronomy
 - discovering significant patterns
 - analysis of rich image/catalog databases
 - understanding complex astrophysical systems
 - integrated data/large numerical simulations



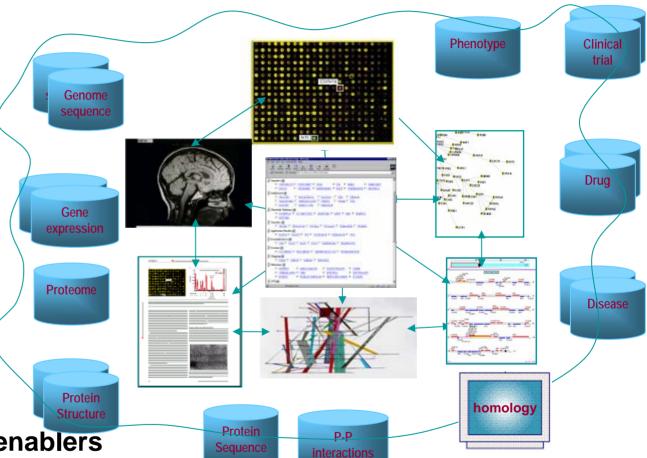
{Inter}national Virtual Observatory




Source: Ray Plante, NCSA

Gene Expression and Microarrays

- Concurrent evaluation
 - expression levels for thousands of genes
- Photolithography
 - up to 500K 10-20 micron cells
 - each containing millions of identical DNA molecules
- Image capture and analysis
 - laser scanning and intensity calculation



Source: Affymetrix

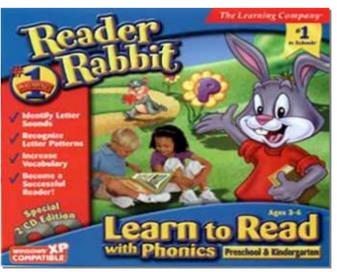
Data Heterogeneity and Complexity

Genomic, proteomic, transcriptomic, metabalomic, protein-protein interactions, regulatory bionetworks, alignments, disease, patterns and motifs, protein structure, protein classifications, specialist proteins (enzymes, receptors)

Many causes and enablers

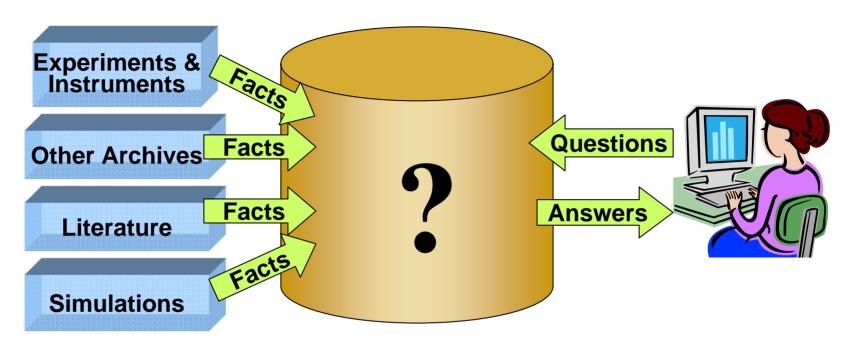
- increased instrument resolution
- increased storage capability
- The challenge: extracting insight!

Source: Carole Goble, Manchester


Need: Simple, Easy-To-Use Tools

"Genome. Bought the book. Hard to read."

Eric Lander



The Problem for the e-Scientist

- Data ingest
- Managing a petabyte
- Common schema
- How to organize it?
- How to reorganize it?

- Query and visualization tools
- Support and training
- Performance
 - execute queries in a minute
 - batch (big) query scheduling

Source: Tony Hey, Microsoft

It's Called Google ...

"I want a file system visible from earth orbit."

Mark Seager, LLNL

... but the file system isn't as important now

Two Data Analysis Modes

- Hypothesis-driven
 - "I have an idea, let me verify it."
- Exploratory
 - "What correlations can I glean from the data?"
- Different tools and techniques
 - exploratory analysis relies on deep data mining
 - supervised and unsupervised learning
 - "grep" is not a data mining tool
- Distributed, multidisciplinary data
 - rising rapidly and correlations needed

Data Mining: Why We Care

An iterative process

- discovering valid, novel and useful patterns
- valid: generalize to the future
- novel: what we do not know
- useful: actionable based on insight

What information consumes is rather obvious: it consumes the attention of its recipients. Hence a wealth of information creates a poverty of attention, and a need to allocate that attention efficiently among the overabundance of information sources that might consume it.

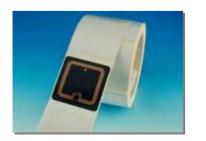
Herbert Simon

The Wal-Mart Lesson

"We know how many 2.4-ounce tubes of toothpaste sold yesterday, and what was sold with them. Our database grows because we capture data on every item, for every customer, for every store, every day"

Dan Phillips, VP of IS, Wal-Mart

- ~3600 U.S. stores and ~500 TB
 - more importantly, they react immediately


From RFID to Smart Dust

Smart dust (pixie dust)

- wireless environmental sensors
 - perhaps as small as 1 mm³
- commodity hardware and MEMS
- flora and fauna measurements
 - an IP address for every frog

RFID tags

- secure, inexpensive and disposable
- passive and active versions
- contents: identity, state, location
- logistics management and tracking
 - Wal-Mart leadership and EU Euro tracking

UCB COTS
Smart Dust

SUN SPOT

RENCI Petascale Data System

- Not just a large parallel file system!
 - rather, a database and data model
 - ontologies, ingestion, federation, mining, ...

- science and humanities domains
 - biomedicine, environmental analysis, economics
- large-scale data management technology
- Rationale
 - exploratory analysis, not just hypothesis-driven studies
 - diverse communities with high-level interfaces
- grep is not a search methodology!

From SNPs to HapMap

- Single Nucleotide Polymorphisms (SNPs)
 - one in 1200 bases differ across individuals
 - SNPs act as markers to locate genes
- Common groups of SNPs are shared
 - i.e., form a haplotype
- HapMap data sources
 - 90 Yoruba individuals (30 trios) from Nigeria (YRI)
 - 90 individuals (30 trios) of European descent from Utah (CEU)
 - 45 Han Chinese individuals from Beijing (CHB)
 - 45 Japanese individuals from Tokyo (JPT)
- 3,500,000 SNPs typed
 - basis for association studies for disease identification

International

HapMap

UNC HapMap Simulator/Bakeoff

Resample from HapMap haplotypes

- create individuals with statistical properties of data
- recombine and adjust
 - biased SNP selection and sample size

Model disease

- create large populations with families/select individuals
- disease model can be complex
 - involving multiple loci

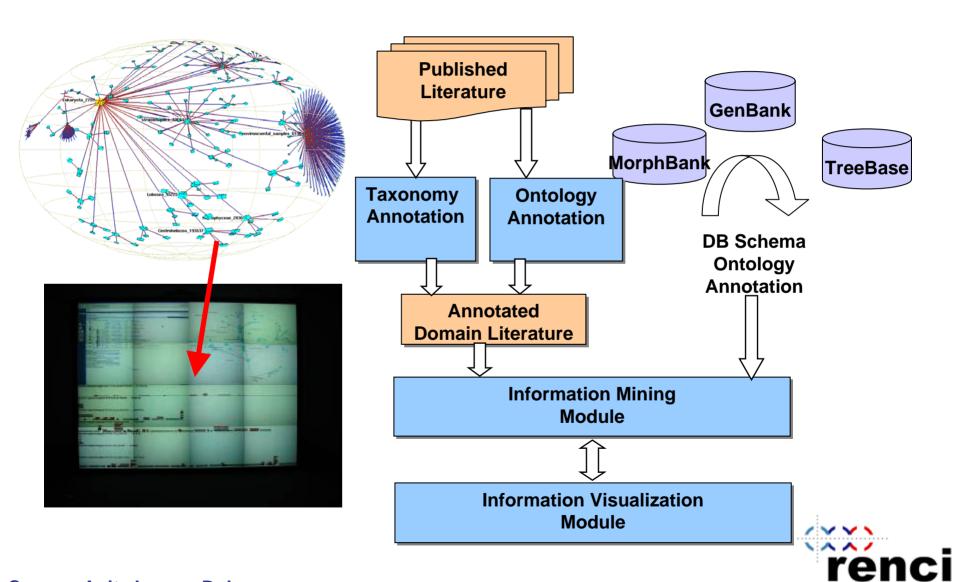
Enable analysis bakeoff

- five data sets simulated with 500K SNPs
 - trait caused by common sequence variants
 - each data set has 5000 cases/5000 controls
 - common versus rare traits
 - independent versus additive versus epistatic
 - variation in effect size and allele frequency
- blind analysis by five UNC groups
 - computer science, applied math
 - biostatistics, pharmacy and genetics

Structuring Scientific Literature

Each domain described by distinct sources

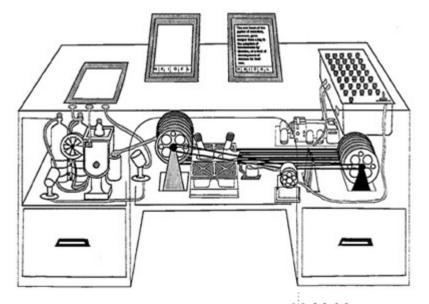
- ontologies
 - domain concepts, entities and relationships
- taxonomies
 - classification into ordered categories
- curated databases
 - additional inter-entity links/relations


Scenario

- customize multidimensional space
 - change source/target ontology
- visualize
 - connections (concepts/entities, chain/paths)
 - titles/abstracts of documents supporting the connections

Source: Anita Lungu, Duke

Federation and Information Visualization


Source: Anita Lungu, Duke

Memex: Still Prescient

"Consider a future device for individual use, which is a sort of mechanized private file and library. It needs a name, and to coin one at random, "memex" will do. A memex is a device in which an individual stores all his books, records, and communications, and which is mechanized so that it may be consulted with exceeding speed and flexibility. It is an enlarged intimate supplement to his memory."

Vannevar Bush "As We May Think," 1945

